

Formulas from the "Lifetime calculation" article

Formula 1: Basic rating life in 10⁶ revolutions

For ball bearings : $L_{10} = \left(\frac{C}{P}\right)^3$

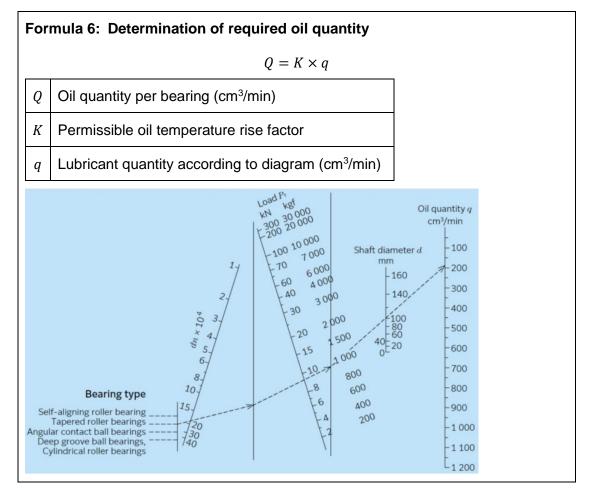
For roller bearings : $L_{10} = \left(\frac{c}{p}\right)^{\frac{10}{3}}$

Basic rating life in operating hours : $L_{10h} = \frac{16\,666.\overline{6}}{n} \times \left(\frac{C}{P}\right)^p$

Forr	Formula 2: Equivalent dynamic load P				
$P = X \times F_r + Y \times F_a$					
F _r	Radial load				
Fa	Axial load				
X	Radial load factor can be found in the <u>catalogue</u> for each type of rolling bearing.				
Y	Axial load factor can be found in the <u>catalogue</u> for each type of rolling bearing.				

Formula 3: Modified calculation of rolling bearing service life L_{nm} and L_{nmh}					
$L_{nm} = a_1 \times a_{ISO} \times L_{10}$					
$L_{nmh} = a_1 \times a_{ISO} \times L_{10h}$					
L_{nm}	Modified rating life in 10 ⁶ revolutions				
L _{nmh}	Modified rating life in hours				
<i>a</i> ₁	Life adjustment factor for reliability				
a _{ISO}	Life modification factor for the operating conditions				
	$a_{ISO} = f(e_c \times C_u \div P, \kappa)$				
	e_c = Contamination factor				
	C_u = Fatigue load limit				
	P = Equivalent dynamic load				
	$\kappa = \text{Viscosity ratio}$				
L ₁₀	Basic rating life: Reference life in 10 ⁶ revolutions				

Formula 4: Viscosity ratio κ $\kappa = \frac{v}{v_1}$


Formula 5: Reference viscosity v_1 and ist dependency on the speed n and the size D_{pw}

If
$$n < 1\ 000\ min^{-1}$$
, $v_1 = 45\ 000\ n^{-0.83}\ D_{pw}^{-0.5}$
If $n \ge 1\ 000\ min^{-1}$, $v_1 = 4\ 500\ n^{-0.5}\ D_{pw}^{-0.5}$

Formula from the "Lubrication" article

Formulas from the "Fit selection" article

Formula 7 und 8: Reduction of interference due to radial load Δ_{dF}					
Formula 7		Formula 8			
$F_r \le 0.3 C_{or}$		$F_r > 0.3 C_{or}$			
$\Delta_{dF} = 0.08 \left(d \times \frac{F_r}{B} \right)^{\frac{1}{2}} \qquad \qquad N$		Formula 8 $F_r > 0.3 C_{or}$ $\Delta_{dF} = 0.02 \left(\frac{F_r}{B}\right)$ N			
		1			

- Δ_{dF} = Required effective interference relative to radial load, μ m
- d = Bearing bore diameter, mm

B = Inner ring width, mm

- F_r = Actual radial load, N
- $C_{or} =$ Static load rating, N

Formula 9: Required effective interference for the temperature difference Δ_{dT} $\Delta_{dT} = 0.0015 \times d \times \Delta T$ $\Delta_{dT} =$ Required effective interference for the temperature difference in μ m $\Delta T =$ Difference between bearing inner ring temperature and the ambient temperature in °C d = Diameter of the bearing bore in mm

Formula 10: Change in interference due to different expansion coefficients

$$\Delta d_{\rm TE} = (\alpha_1 - \alpha_2) \times d \times \Delta T$$

 $\Delta d_{\rm TE}$ = Change in interference due to different expansion coefficients, mm

 $\alpha_1 =$ Coefficient of expansion of the rolling bearing, $\frac{1}{2c}$

- α_2 = Expansion coefficient of the shaft or housing, $\frac{1}{\circ c}$
- d = Reference diameter of the relevant fit, mm
- $\Delta T =$ Temperature difference between ambient and operation

Formulas from the "Bearing clearance, operating clearance and preload" article

Formula 11: Determination of radial and axial clearance

Radial clearance = δ

Axial clearance = $\delta_1 + \delta_2$

Formula 12: The operating clearance δ_{eff}

 $\delta_{\rm eff} = \delta_o - (\delta_f + \delta_t)$

 $\delta_{\rm eff}$ = Effective interference (due to fits), mm

 $\delta_{o} = Bearing clearance, mm$

- $\delta_{\rm f}$ = Decrease in bearing clearance due to interference caused by fits, mm
- δ_t = Decrease in bearing clearance due to temperature differences between inner and outer rings, mm

Formula 13: The interference δ_f

 $\delta_{\rm f} = (0.70 \sim 0.90) \, \Delta_{deff}$

 Δ_{deff} denotes the effective interference in mm.

Formula 14: Reduction of the operating clearance due to a temperature difference in the bearing δ_t

 $\delta_{\rm t} = \propto \times \Delta T \times D_o$

 $\propto=$ Temperature coefficient of expansion of the bearing material, 12.5 $\times \frac{10^6}{^{\circ}\mathrm{C}}$

 ΔT = Temperature difference (inner/outer ring) in °C

 $D_o =$ Outer ring raceway diameter, mm

Formula 15 and 16: The raceway diameter of the outer ring D_o

Formula 15

For ball bearings and spherical roller bearings:

 $D_o = 0.20 (d + 4.0D)$

Formula 16

For roller bearings (except spherical roller bearings): $D_o = 0.25 (d + 3.0D)$

Formula from the "Plastic deformation" article

Formula 17: Static safety factor S_0 $S_0 = \frac{C_0}{P_0}$ S_0 = static safety factor C_0 = Static load rating P_0 = Equivalent static load